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Advanced Nonintrusive Monitoring of Electric
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I. INTRODUCTION

THE boom in communications research and development has made highly sophisticated means for gathering, mov-
ing, and exchanging information part of everyday life. Examples include the Internet, Bluetooth and 802.11b net-

works, cellular, and satellite communications. However, the process of gathering and analyzing the data to send over
this expanding web of information networks remains expensive for many applications. A building facilities manager
may be able to configure a cellular phone to monitor the energy usage and operating schedule of an HVAC plant, but
the usefulness of the information transmitted will generally be directly proportional to the complexity and size of the
installed sensor array.

This difference between information gathering and information networking serves to re-emphasize an established
fact: though remote access to information and control inputs may be obtained easily and inexpensively via network-
ing, access does not provide useful information without installation of a potentially expensive and intrusive sensor
array. Mass production may ultimately reduce sensor cost, especially for solid-state or technologically advanced
micro-electromechanical sensors. Installation expenses are likely to remain high, especially for temporary monitoring
applications where data is gathered for a brief window of time with a removable sensor network. In addition, the
reliability of a monitoring system with many sensors may be reduced in comparison to a system with relatively fewer
sensors.

The Nonintrusive Load Monitor (NILM) can determine the operating schedule of electrical loads in a target system
from measurements made at a centralized location, such as the electric utility service entry. In contrast to other systems,
the NILM reduces sensor cost by using relatively few sensors. The NILM disaggregates and reports the operation of
individual electrical loads like lights and motors using only measurements of the voltage and aggregate current at the
utility service point of a building. It can also identify the operation of electromechanical devices in other kinds of power
distribution networks. For example, the NILM can determine the load schedule in an aircraft from measurements made
only at the generator, or in an automobile from measurements made at the alternator/battery block. The NILM can
distinguish loads even when many are operating at one time.

The NILM is an ideal platform for extracting useful information about any system that uses electromechanical
devices. The NILM has a low installation cost and high reliability because it uses a bare minimum of sensors. It is
possible to use modern state and parameter estimation algorithms to verify remotely the “health” of electromechanical
loads by using a NILM to associate measured waveforms with the operation of individual loads. The NILM can also
monitor the operation of the electrical distribution system itself, identifying situations where two or more otherwise
healthy loads interfere with each other’s operation through voltage waveform distortion or power quality problems.

Strategies for nonintrusive monitoring have developed over the last twenty years. Advances in computing technol-
ogy make a new wealth of computational tools useful in practical, field-based NILM systems. This paper reviews
techniques for high performance nonintrusive load and diagnostic monitoring and illustrates key points with results
from field tests.

II. BACKGROUND AND EARLY APPROACHES

One of the earliest approaches to nonintrusive monitoring, developed in the 1980’s at MIT by Professor Fred
Schweppe and Dr. George Hart, had its origins in load monitoring for residential buildings. Under Dr. Hart’s in-
genious scheme, the operating schedules of individual loads or groups of loads are determined by identifying times at
which electrical power measurements change from one nearly constant (steady-state) value to another. These steady-
state changes, known as events, nominally correspond to the load either turning on or turning off, and are characterized
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by their magnitude and sign in real and reactive power. Recorded events with equal magnitudes and opposite signs are
paired to establish the operating cycles and energy consumption of individual appliances. This process of detecting
steady-state changes provides the basis for a commercial version of this early work, as described in a 1999 article in
the IEEE Computer Applications in Power.

The 1999 CAP article [2] describes a five-step process for load disaggregation through the detection of changes in
aggregate power consumption. First, an edge detector is used to identify changes in steady-state levels. Second, a clus-
ter analysis algorithm is used to locate these changes in a two-dimensional “signature space” of real and reactive power
(a
���

-
���

plane). The signature space reduces the potentially complicated load transient data to a two-dimensional
space of changes in power consumption with a pleasing and useful graphical interpretation. Third, positive and neg-
ative clusters of similar magnitude are paired or matched (especially for “two-state” loads that turn on, consume a
relatively fixed power, and turn off). In a fourth step known as anomaly resolution, unmatched clusters and events
are paired or associated with existing or new clusters according to a best likelihood algorithm. In the fifth and final
step, pairs of clusters are associated with known load power consumption levels to determine the operating schedule
of individual loads. This step uses information gathered during a training or survey phase in the building.

This five-step approach to nonintrusive load monitoring has the advantage of making intuitive sense, and has been
demonstrably successful in certain classes of buildings, such as residences. Recent field tests in a variety of other
buildings have uncovered a number of limitations of the technique of examining steady-state changes in a signature
space. Some of these limitations are well established, while others are relatively new.

The two-dimensional signature-space technique relies on at least three key assumptions that limit its effectiveness.
The first assumption is that different loads of interest exhibit unique signatures in the

���
-
���

plane. They may not,
especially in commercial and industrial facilities where the number and variety of loads is generally greater than in
a residence. The two-dimensional signature-space becomes crowded with indistinguishable loads as the number and
kind of loads increases. In a home there may be only one 5 kW load, such as a hot water heater. In comparison, a light
commercial facility with an HVAC plant, office equipment, and lighting may have several different loads that overlap
ambiguously in the

���
-
���

plane.
The second limiting assumption is that load composition is determined by steady-state power consumption. This

requires waiting until transient behavior settles out so that steady state values can be measured. We have found
it difficult to find any suitable time scale in industrial or commercial environments that yields reliable steady-state
measurements. A conservative estimate of steady-state power might require a long interval of near-constant demand.
Requiring a long steady-state waiting time prevents the monitor from tracking rapid sequences of loads. Some loads
will be missed, and these may not be caught in the anomaly resolution phase. Short waiting times, on the other hand,
may trigger measurements in the middle of load transients, resulting in spurious events in the cluster analysis phase.
Field studies have shown that large HVAC loads such as fans and chillers might take from 30 seconds to several minutes
to gradually spin-up to their final operating speed. Other loads, such as variable speed drives (VSDs), may never settle
to a steady-state. Furthermore, if the variations in power consumption are large enough, VSDs and similar loads could
prevent the monitor from finding a steady-state consumption level or recording any events. Some industrial loads that
ordinarily settle to steady state conditions may fail to do so if they include poorly tuned controllers or other faults.

A third limitation is that most steady-state NILM systems process data in “batch” format using a day or more of
stored data. This is not strictly implied by the five-step disaggregation procedure outlined above, but is based on the
assumption that near-real-time identification of load operation is not necessary. This limits the monitor to load survey
and power scorekeeping applications, excluding the vast potential for applications in real-time diagnostics.

III. ADVANCED TECHNIQUES FOR MONITORING

Steady-state monitoring techniques are successful in homes and small businesses because of the low event generation
rate and number of loads at these sites. Medium to large size commercial and industrial facilities require a more
sophisticated approach, due in part to high rates of event generation, load balancing, and power factor correction.
Savvy commercial and industrial facilities managers want near-real-time monitoring information in addition to batch
results over an interval of several weeks. Real-time identification is also essential if the NILM is to serve as a “black-
box” diagnostic monitor in transportation systems like aircraft or naval vessels. Field tests have demonstrated the value
of a number of enhancements that enable an advanced NILM to tackle complex monitoring environments.
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Fig. 1. Plot of the steady state power consumption of a computer and a bank of incandescent lights. Real power is plotted against reactive
power.

A. Higher Harmonics

Higher harmonics in the aggregate current signal can be used to distinguish loads with overlapping clusters in the
���

-
���

signature space. Many loads draw distorted, non-sinusoidal current due to their inherent physical character-
istics or the presence of power electronics. Examples include office equipment (i.e., computers and copiers), actively
controlled industrial equipment such as variable speed fans, and electroplating baths. Our advanced field monitoring
system uses a phase-locked short-time Fourier transform of current waveforms collected at sample rates of 8000 Hz or
higher to compute “spectral envelopes” that summarize time-varying harmonic content. For a single phase load, real
and reactive power correspond to the envelopes of in-phase and quadrature current drawn by the load relative to the
voltage. The short-time Fourier transform computes estimates of the real, reactive and higher frequency components
of the current.

Figure 1 shows the that higher harmonics are useful for distinguishing loads that are similar in the P-Q signature
space. Figure 1 shows a collection of turn-on and turn-off events recorded at a site with personal computers and
a bank of incandescent lamps. The loads are practically indistinguishable in the P-Q signature space because they
consume essentially the same real and reactive power. However, typical computer power supplies draw “signature”
third harmonic currents. The loads are easily separable by examining higher harmonics.

Figures 2 and 3 illustrates the relative ease of distinguishing individual loads in a three-dimensional space with axes
denoting changes in real power, reactive power, and third harmonic. Our advanced NILM routinely examines harmonic
content up to and including eighth harmonic, and can be customized to examine higher harmonics as necessary.

B. Transient Detection

Our advanced NILM recognizes individual loads based on distinctive load transient shapes. The transient behavior
of a typical load is intimately related to the physical task that the load performs. For example, the turn-on transients
associated with a personal computer and with an incandescent lamp are distinct because charging capacitors in the
computer power supply is fundamentally different from heating a lamp filament. Overall transient profiles tend to be
preserved even in loads that use active waveshaping or power factor correction. Most loads observed in the field have
repeatable transient profiles, or at least sections of the transient profile that are repeatable. Transient-based recognition
permits near-real-time identification of load operation, especially turn-on events.

Transients are identified by matching events in the incoming aggregate power stream to previously defined transient
signatures, or “exemplars.” Exemplars can be determined, for example, by a one-time direct observation of the device
in question, or by previous training in the laboratory. Pre-training has proven to be a reasonable approach for very
repeatable loads that show up in large quantities, such as fluorescent lamp ballasts. The exemplar may be composed of
multiple parts for transients with a number of distinct sections. Each section of the exemplar can be shifted in time and
offset to match a incoming transient data. In addition, an overall gain may be applied to all sections of the exemplar to
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coordinate system, illustrating the separation of clusters.

achieve a better fit. Each event detected is compared to the full set of exemplars by using a least squares criterion to
select the appropriate shifts and gains. The match with the lowest residual norm per number of points is then compared
to a threshold. If the fit is good enough, the event is classified as a match to the exemplar. If not, the event is left
unclassified. Correct classification of overlapping transients is possible using properly designed exemplars.

The value of examining transient information can be understood graphically by examining Figures 4, 5, and 6.
Figures 4 and 5 show the spectral envelopes corresponding to the fundamental, in-phase component of current (essen-
tially, “real power”) demanded in four different buildings in California. The top graph in Figure 4 shows the power
consumed solely by the HVAC panel in a building (“ISD”) in Los Angeles County. The bottom trace of Figure 4 and
the top trace of Figure 5 show power consumption in two different public schools near San Francisco (“Hanna” and
“Pinole”, respectively). Finally, the bottom trace in Figure 5 shows the total power consumption in another building in
Los Angeles County (“Comm”); the inset in this plot is a magnified portion of the same waveform, illustrating the high
density of events. These four traces show a progression in increasing event generation in a building HVAC panel using
steady-state signature detection. As the complexity and variation on the electrical grid increases, it becomes more
difficult to tune a steady-state change detector to function at all. For buildings with behavior nearing that of the Comm
building, it becomes essential to either augment the steady-state approach or discard it completely in favor of transient
identification. By enabling the monitor to deal with higher rates of event generation, a single NILM using transient
event detection can generally monitor a comparatively more complex building power network than with steady-state
change detection alone.

In addition to better load disaggregation, transient analysis can provide diagnostic information. Diagnostics can be
developed by exploring the the relationship between the electrical transient and the physics of the load. Specifically, a
load model can often be developed which relates the shape of the electrical transient to physical or design parameters
of the load. The load model is often a differential equation, although we have experimented with other choices. It is
often possible to deduce the physical condition of the load by examining load model parameters when the transient
data is rich enough to identify the load model.

Figure 6 illustrates the diagnostic capabilities of our advanced NILM. The numbers displayed in the text window
below the graphs in Fig. 6 show estimated parameters of an induction machine model. The solid lines in the graph
represent raw data, while the points show the results of a simulation with the estimated parameters. The close agree-
ment shown in the figure indicates that the parameters and model accurately predict the response of the actual load. In
addition to developing these physically-based models, we have also developed techniques that can accurately estimate
model parameters without a good initial guess. These estimation methods enable a building manager to trend load
parameters and use parameter information to predict impending faults. In the case of an induction motor, such faults
might include shorted motor windings, broken rotor bars, and especially failures in a mechanical system attached to
the shaft, e.g., a slipping belt.
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Fig. 4. Plots of the aggregate energy consumption collected at
the HVAC service entry in a California county government build-
ing and at the main service entrance of a California elementary
school.
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Fig. 5. Plots of the aggregate energy consumption collected
at the main service entries of a California middle school and a
communications service building. The inset plot illustrates the
high density of events; this data in this plot is averaged in order
to enhance the visibility of the individual events.

Fig. 6. Startup transient for an induction machine.

C. Disaggregating Continuously Variable Loads

A third benefit obtained through transient identification and spectral analysis is that our advanced NILM has the
ability to monitor buildings with continuously variable loads. Many such loads, such as the VSDs used in HVAC fans,
servo their electrical power consumption under the influence of an active closed-loop controller. Transient detection
can simplify the tracking of these and other continuously variable loads in several ways.

Figure 7 shows three spectral envelopes associated with the operation of a 40 Hp VSD in an HVAC plant on the
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MIT campus. The top trace in this figure shows the real power demanded by a variable-speed fan drive in an HVAC
system. The drive begins with an “open-loop” spin-up to operating speed during the first � � seconds of operation. This
open-loop spin-up is repeatable because a microprocessor controls the startup profile every time the drive is activated.
A NILM can recognize that a VSD is active in the building using transient recognition, but transient recognition does
not provide a means for continuously tracking the power consumption of a variable load like a VSD.

When the NILM recognizes a continuously variable load like a VSD, we have found that it is often possible to
disaggregate the variable load by carefully examining the spectral envelopes. The VSD connects to the utility through
a three-phase, delta-connected rectifier. The three-phase rectifier draws distorted, pulsatile current waveforms from
each of the three utility phases. As shown in the lower two traces in Figure 7, this rectifier set has the effect of causing
the VSD to create characteristic traces not only in real power but also in the fifth and seventh harmonics, as illustrated
in the middle and bottom traces respectively. These higher harmonic traces have envelopes that roughly track the shape
of the real power trace. If the VSD is the only load at a target site which generates the bulk of a particular harmonic
signal (such as the seventh harmonic) in the aggregate data, this particular harmonic signal can be functionally mapped
and subtracted from the “real power” spectral envelope in order to remove the continuously varying component of the
“real power” signal due to the VSD from the aggregate power signal. This makes it easier to identify the remaining
active loads in the aggregate power signal. In general, the higher harmonic information can be used both to track the
energy consumption of the variable load and also to disaggregate this variable load from the power consumption of the
remaining loads. There are many possible variations on this technique of refining the mappings between a particular
harmonic and other harmonics; these techniques allow one group of loads to be disaggregated from another.
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Fig. 7. Startup transient of a variable speed drive.

Additionally, harmonic signatures can provide direct diagnostic information even without parameter estimation.
Returning to Figure 7, the drive is operating under closed loop control as it attempts to regulate the pressure in a distant
duct by varying fan speed starting at � � � seconds. The control loop is poorly tuned and the drive exhibits a slow, large
amplitude oscillation in “steady state.” This pathology is not easily caught in a brief inspection of the drive, as the
oscillation is fairly slow; nevertheless, the identification of this failure mode is important because it wastes energy and
wears the mechanical components of the drive. This condition is easily caught by an advanced NILM which examines
transients and spectral envelopes.
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IV. APPLICATIONS AND THE FUTURE

We have implemented all of these analytical enhancements for nonintrusive monitoring on an inexpensive computer
platform for use in the field. A suite of NILM tools, including sophisticated model-based diagnostic algorithms that
track (and could in principle trend) model parameters to determine the health of critical loads, has been developed
under the Linux operating system environment. All of these software tools run on a Pentium-class personal computer
(300 MHz clock or higher) with a PCI-bus data-acquisition card; any relatively inexpensive personal computer, laptop,
or embedded system like a PC104 chassis could be used to develop a modern monitor which performs transient event
detection. We have used all of these platforms with success in buildings and transportation systems.

Current experiments in the field are aimed at enhancing the diagnostic capabilities of the NILM, integrating it into
building energy management and control systems, and improving it as a load monitor for conducting surveys and
energy-usage scorekeeping. Even in very modern buildings with sophisticated control and consumption metering
systems, we have found that the monitor is invaluable to sophisticated facilities managers. As the NILM requires
virtually no additional wiring effort and few installed sensors, it provides invaluable building operating history and
health information in a package which is both easy to install and highly reliable.

In the future, we expect to introduce new event detection and classification schemes where load disaggregation and
usage tracking are increasingly accurate. The best approaches appear to blend all the tools described above to some
degree. For example, the highest accuracy in usage disaggregation may be obtained by combining the steady-state and
transient approaches to event recognition. Additionally, the steady-state signature scheme can obviously be enhanced
by working in a larger signature space with harmonic data. Yet another combination of steady-state and transient
identification methods may be used to alleviate the problem of defining steady-state intervals by using transient event
detection to tease apart overlapping transients which occur at high rates. Furthermore, the transient detection approach
may be minimally successful when transient shapes are masked or distorted by background, periodic oscillations in the
building; by examining changes in the steady-state sections of the aggregate data stream, the transient event detector
may be more successful in looking for “most likely” shapes in a cluster of overlapping or distorted transients. We are
currently developing “arbiters” that use many different approaches to identify events with the highest possible accuracy
and precision.

Fig. 8. Nonintrusive monitoring on the web.
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Because the advanced NILM uses a conventional computer platform, it is easily connected with communications
networks, including the web. An example from a NILM installed on the MIT campus is shown in Figure 8. The
Netscape window shows a turn-on transient associated with a washing machine on top of an 11 kW base load; this can
be viewed via a remote connection to a computer monitoring a campus dormitory containing a laundromat. The cusp-
like steady-state, following the initial acceleration of the agitator motor to operating speed, is due to the “steady-state”
oscillation of the agitator. Other load transients recognized by the monitor, including several dryers, are listed in the text
window below the graphs. The items in this list are hypertext links corresponding to recorded events; these links can
be selected in order to view a record for each indicated transient, including time, energy consumption, and diagnostic
parameters (e.g. heater resistance, motor parameters like stator resistance, magnetizing and leakage inductances,
etc.) We anticipate that the advanced NILM technology will provide an ideal platform for remote monitoring and for
customizing network-accessible information packages for utility customers and building occupants.
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